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Abstract
In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion
sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton
and the stationary adhesions is mediated by the continuous association and dissociation of
molecular bonds. We introduce a simple model for the competition between the stochastic
dynamics of elastic bonds at the moving interface and relaxation within the moving actin
cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic
simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead
to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic
bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation
effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Migration and adhesion of tissue cells relies on the continuous
formation and dissociation of adhesion sites based on
transmembrane receptors from the integrin-family (so-called
focal adhesions, FAs) [1, 2]. FAs provide a mechanical
link between the actin cytoskeleton and the extracellular
environment and in addition act as signaling centers [3]. In
mature cell adhesion, they are mainly coupled to actin bundles
(so-called stress fibers), which are contracted by myosin II
motors. In cell migration, they are mainly coupled to the
retrograde flow of the actin mesh, which is driven not only
by myosin II contractility close to the cell body, but also by
actin polymerization at the leading edge. In all cases, the
actin cytoskeleton and the focal adhesions are very dynamic,
with all components being in a state of continuous flow [4, 5].
However, the details of how flow in the actin cytoskeleton
is coupled to the dynamics of protein localization and force
transmission at focal adhesions are not clear.

In experiments with migratory cells, actin motion can
be identified as the drift of fluorescent speckles in the actin

mesh over the FAs. For different cell types, including growth
cones and keratocytes, it has been found that the slower the
retrograde flow, the faster the cell protrusion, suggesting that
the growing actin network pushes the cell envelope forward
if sufficiently stalled at the FAs [6–9]. These findings
have led to the suggestion that FAs can act as molecular
clutches: as the clutch engages, retrograde flow slows down
and protrusion is increased [10, 11]. A possible molecular basis
are adapter proteins like talin, α-actinin and vinculin involved
in the binding between the integrin receptors and the actin
cytoskeleton. Indeed, it has been found that the constituents
of FAs move with different speeds, with a low speed for the
integrins, an intermediate speed for vinculin and a high speed
for actin [12, 13].

Correlation of actin speed with traction recently became
possible by combining fluorescent speckle microscopy with
traction force microscopy [14]. The new method was used
to construct spatial maps of traction and intracellular actin
flow in migratory epithelial cells. Maxima of traction were
observed where adhesion proteins clustered, predominantly a
few micrometers behind the leading edge of the cell. Actin
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Figure 1. Schematics of the situation of interest. (a) Biological system: the retrograde flow of actin (red) from left to right is caused by
polymerization pushing at the front and by myosin motors (green) pulling at the back. It is slowed down at sites of adhesion composed of
layers of adhesion receptors (black) and adapter molecules (blue). The transparent yellow boxes mark the two main regions of dissipation
which correspond to two forces counteracting the flow: stochastic dynamics of elastic bonds at the adhesion sites (bottom box) and viscous
dissipation in the cytoskeleton (top box), e.g. due to sliding friction between neighboring filaments. (b) Model: the driving force for sliding
(FD, right arrow) is balanced by time-varying elastic forces at the interface (κx , bottom left arrow) and velocity-dependent viscous forces
inside the cell (ξv, top left arrow).

speed, on the other hand, was maximal at the very edge of
the cell. Analysis of the data revealed that the dependence of
traction on actin speed followed a robust biphasic relationship
where force transmission was maximal at an intermediate actin
speed of around 10 nm s−1. These findings suggest that rate-
dependent processes are essential for the regulation of FAs, in
particular for their clutch function.

The physical understanding of friction at moving
interfaces is a long standing and still very active research
field [15]. It has been shown early by Schallamach that
modeling of friction by discrete microscopic bonds can lead
to biphasic behavior in the velocity–stress relation [16].
Recently this has been confirmed by more elaborate computer
simulations [17] and analytical calculations [18]. Another
important and often observed feature of these systems is
stick–slip behavior, which typically occurs at intermediate
velocities. This body of work in the field of tribology
demonstrates that the interplay between movement, binding
and force creates a rich phenomenology of interesting effects.
However, the consequence of this for the way cells sense
and react to their environment have hardly been explored,
although the underlying molecular mechanisms show some
intriguing similarities. A notable exception is a recent
experimental–theoretical study on the dynamic retraction of
filopodia on compliant substrates [19]. However, because
this treatment included many details of the particular system
of interest (including a force–velocity-relation for retraction
by myosin molecular motors), it is not sufficiently generic
to be easily transferred to similar situations of interest. In
another recent study on clutch dynamics, a kinetic model has
been introduced to study the turnover rates of the different
proteins involved [20]. Although very successful in explaining
experimental data [12, 13], this kinetic approach does not
address issues of spatial coordination and force transmission.

Here we introduce a simple model which allows us to
study the generic aspects of molecular bonding at moving
interfaces. We apply our approach to study theoretically
how force is transmitted from the flowing actin cytoskeleton
through the FAs to the substrate, where it has been measured
before as a traction force. Instead of confronting the full
complexity of the cellular system, we focus on one particular
aspect, namely the competition between the stochastic

dynamics of elastic bonds at the moving interface and
additional modes of relaxation within the actin cytoskeleton.
As common in this field, we model the bonds as harmonic
springs which are elongated by the moving interface once they
are bound. However, it is important to note that the binding
dynamics at the moving interface is not the only source of
dissipation. In practice the flowing actin gel is a plastic–
viscoelastic body which features many additional modes of
dissipation, including the rupture of crosslinks inside the
actin cytoskeleton and the dissipative contributions from the
hydrolysis cycles of the molecular motors. The simplest way
to model this situation is to lump all these additional processes
into one effective internal viscous friction coefficient. In the
force balance, the elastic contributions from the bonds at the
interface are thus complemented by an internal dissipative
force. From the mechanical point of view, we deal with
a Kelvin–Voigt model in which the elastic part obeys some
stochastic dynamics.

We find that our simple model can lead to a surprisingly
rich behavior which allows us to draw interesting conclusions
regarding the experimental results. The relation between
average force and average speed for such a system is highly
non-linear and shows a maximum of transmitted force for
intermediate speeds, as observed experimentally [14] and as
expected from earlier theoretical work [16–18]. We analyze
the dependence of this relation on model parameters such as
the number of bonds and internal viscous friction. Internal
friction, damping the movement of the actin, is found to play
an important role in suppressing rupture cascades and thus in
stabilizing the adhesions. We demonstrate the existence of
an unsteady stick–slip-motion for low internal viscous friction
at intermediate driving forces. The existence of this regime
poses an important constraint on the operation of regulatory
mechanisms acting at adhesion sites.

2. Model definition

Figure 1(a) shows a schematic representation of the biological
system of interest. Filamentous actin (red) is polymerized at
the leading edge in response to membrane-bound activators and
then moves towards the cell body, where it is disassembled.
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This movement is driven by the polymerization pressure at the
front and by active pulling from the back by myosin II motors
(green). Using fluorescent markers for the moving actin, one
observes that the velocity of this backward movement strongly
decreases from the cell edge towards the cell body [14]. This
observation has been made in all cell types studied before
and the common interpretation is that movement is slowed
down by friction between the moving actin and cell adhesion
contacts [10, 11]. These cell adhesions (focal adhesions,
FAs) are organized around a layer of transmembrane receptors
from the integrin-family (black) binding to the ligands on
the substrate. On the cytoplasmic side, they couple to
the moving actin cytoskeleton through a layer of adapter
proteins (blue). Continuous formation and rupture of bonds
between the FA and the moving actin cytoskeleton is one
main mode of dissipation. However, another important mode
is dissipation inside the cytoskeleton, for example by sliding
friction between neighboring actin fibers as indicated by
showing several parallel fibers. The localization of these
two different dissipation mechanisms is indicated by the
yellow boxes and corresponds to two different types of forces
counteracting retrograde flow.

In figure 1(b) we depict our modeling approach to this
biological system. We model the flowing actin cytoskeleton
as a rigid slider which is driven over the substrate by a
constant driving force FD (right arrow). The driving force
represents the combined effects of actin polymerization at the
leading edge and myosin contractility at the back end of the
lamellum. Alternatively one could assume a constant driving
velocity. However, the assumption of constant driving velocity
is not very natural because this system is dominated by force-
generating processes. Here we proceed by assuming a constant
driving force FD as the main model parameter determining the
instantaneous flow velocity v. In our model, it is balanced
by two time-dependent forces reflecting the two main modes
of dissipation considered here. The first force counteracting
the driving force is the elastic force κx resulting from bonds
with effective spring constant κ being continuously stretched
to extension x at the moving interface (bottom left arrow).
Although the bond response is elastic, the overall process is
dissipative due to the continuous formation and rupture of
bonds. A second counteracting force is the viscous friction
force ξv arising from the immersion of the slider into the
actin mesh (top left arrow). One can think of an actin fiber
which has a multitude of interactions with the surrounding
actin network, resulting in an overdamped dynamics with an
effective viscous friction coefficient ξ . In addition, we note
that the force-generating mechanisms (in particular the myosin
II motors pulling at the back) also have some dissipative parts
(represented e.g. by the velocity-dependent part of the effective
force–velocity relation of myosin II), which also contribute to
internal dissipation.

We consider a slider binding to an adhesion of constant
size, thus a constant maximal number of N bonds can form.
For each bond, a time-dependent occupancy variable qi(t) ∈
{0, 1} (1 � i � N) describes whether a bond is open or closed.
Each of these bonds is assumed to behave like a Hookean
spring with spring constant κ and time-dependent extension

xi(t). Our central model equation is the balance of the three
forces involved:

FD = ξ v(t) + κ

N∑

i=1

qi(t)xi(t). (1)

Note again that FD is a constant model parameter and that
in between binding and rupture events (when the qi change),
the ensemble behaves like a simple Kelvin–Voigt body. One
can describe the motion of the slider iteratively by first
solving equation (1) for time-dependent velocity v(t) and then
propagating the bond extensions, which in turn determine the
new velocity. In the absence of any bond dynamics, the
system would come to a halt because bond extensions would
only increase and eventually the elastic bond forces would
completely balance the driving force. In the presence of bond
dynamics, bond rupture will relax the elastic forces and thus
allow further movement of the interface. Note that the elastic
bond force is the one which is measured as a local traction
force at the FAs. When all bonds were open (qi = 0), the
slider would simply move with constant velocity v = FD/ξ .

For bond dynamics, we again make simple but non-trivial
assumptions. For the rupture rate of single bonds we use the
well-known Bell–Evans formula, krupt(x) = k−er xi [21–23],
which models bond rupture as an adiabatic escape over a
sharp transition state barrier. Here the stretch xi is assumed
to correspond to the one-dimensional reaction coordinate for
the detachment process. The prefactor in the exponent of
the rupture rate formula is given by the reactive compliance
r = κxb/kBT , where the reaction length xb can be identified
with the distance between the bound and transition states
along the reaction coordinate. We assume that binding occurs
with a constant probability once a bond is open, thus we use
a constant binding rate kbind = k+. Each newly formed,
closed bond starts with zero extension (xi = 0). For a bond
cluster of constant size loaded in the vertical direction by a
constant and equally shared force, it has been shown before
that the interplay between the non-linear rupture force and
the statistics of multiple bonds leads to cooperative effects,
including rupture cascades and a stability threshold under
force [24]. In the case considered here, force is not shared
equally, but distributed heterogeneously depending on the
time point of bond formation and the velocity of the moving
interface.

For our computer simulations, we make use of the next-
reaction variant of the Gillespie algorithm [25]. Calculation
of waiting time distributions for binding and unbinding events
presupposes the usage of the solution of equation (1) to
determine the evolution of each linkage in the time between
two events, xi (t + τ ) = xi(t) + [1 − exp(−κnτ/ξ)][FD −
κ

∑
j q j(t)x j (t)]/(κn). Here n = ∑N

i=1 qi is the number
of closed bonds at time t . The cumulative probability
of each bond to survive a time τi is given by �(τi) =
1 − exp(− ∫ t+τi

t krupt,i (t ′, {x j(t)}) dt ′). In our simulations
we assign uniformly distributed random numbers �i to this
probability and invert the equation to produce waiting times
for all linkages, τi = �−1(�i). The event with the shortest
waiting time τmin is selected and the system is propagated
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accordingly using equation (1) before the occurrence of the
event. The inversion of the integral in �(t) can not be
done analytically and we therefore resorted to the usage of
precomputed lists of integrals and series expansions. This
introduces slight errors which are however negligible for our
purposes. The data presented below was also cross-checked
with results obtained from an Euler-like algorithm employing
fixed, small time steps.

3. Mean field treatment

In the following we suggest a formalism to analytically
describe the model defined above and derive an approximation
for the first moments of speed and friction. Let p(x, t, q = 1)

be the probability distribution function of a bond to be bound
(q = 1) and stretched to an extent x at time t . Conversely,
δ(x)p(t, q = 0) denotes the probability that the bond is in the
unbound state. Because we assume instantaneous relaxation
after rupture, this state is always associated with x = 0.
We only deal with bond extensions x � 0, therefore the
normalization of the delta function δ(x) is defined such that∫ ∞

0 δ(x) dx = 1. We then require
∫ ∞

0
[p(x, t, q = 1) + δ(x)p(t, q = 0)] dx = 1. (2)

The equations governing the evolution of the probability of
the bound state can be derived by considering a discretized
probability distribution. The probability to be at extension x
is shifted after 	t to a position x + 	x . However, during
	t there is also a decrease of probability to be bound due to
possible rupture events. Conversely, binding events increase
the probability to be bound and are assumed to occur only at
x = 0. The balance of influx and outflux in the small interval
	x is given by

v(x + 	x)p(x + 	x, t + 	t, q = 1) − v(x)p(x, t, q = 1)

= 	x {−krupt(x)p(x, t, q = 1)

+ δ(x)[kbind p(t, q = 0) − v(x)p(x, t, q = 1)|x=0]}. (3)

The first term on the right-hand side describes rupture of bonds,
the second formation of bonds with zero extension and the
third represents the boundary condition that there is no influx
of probability from the region x < 0. An explicit time
dependence of speed v(t) is changed through equation (1) to
an implicit time dependence v(x) via the bond stretch x(t).
Expanding p(x +	x, t +	t, q = 1) and v(x +	x) and using
v(x) = 	x /	t yields to first order a continuity equation:

∂t p(x, t, q = 1) + ∂x
[
v(x)p(x, t, q = 1)

]

= −krupt(x)p(x, t, q = 1) + δ(x)[kbind p(t, q = 0)

− v(x)p(x, t, q = 1)|x=0] (4)

with the boundary condition at x = 0

0 = kbind p(t, q = 0) − v(x)p(x, t, q = 1)|x=0. (5)

The complementary equation for the evolution of the
probability of the unbound state δ(x)p(t, q = 0) reads

δ(x)∂t p(t, q = 0) = δ(x)

[∫ ∞

0
krupt(x ′) p(x ′, t, q = 1) dx ′

− kbind p(t, q = 0)

]
. (6)

These equations conserve probability as required by equa-
tion (2). In the model introduced in the preceding section we
always have v(x) � 0. This assumption gives rise to a jump
in p(x, t, q = 1) at x = 0. The introduction of the boundary
term −v(x)p(x, t, q = 1)|x=0 in equation (4) is necessary to
guarantee conservation of probability under these conditions.
Setting v = 0 we get the usual master equation for a two-state
system. The description could also be augmented by an addi-
tional second derivative term accounting for possible noise in
the system. This would lead to a form similar to the differential
Chapman–Kolmogorov equation [26].

The equations for a single bond can now be generalized
to an ensemble of bonds with extension x attached to the same
fiber and thus stretched with the same speed v(x):

∂t p(x, t, q) =
∑

i

−δqi ,1∂xi [v(x)p(x, t, q)]
+ δqi ,1[−krupt(xi)p(x, t, q) + [kbind p(x, t, q|qi = 0)

− δ(xi )v(x)p(x, t, q)|xi =0]]
+ δqi ,0

[
δ(xi)

∫ ∞

0
krupt(x ′

i) p(x, t, q|qi = 1)|xi =x′
i
dx ′

i

− kbind p(x, t, q)

]
(7)

where the boundary condition is integrated, as in equation (4),
into the third line on the right-hand side. The notation q|qi =
0, 1 indicates a permutation of qi where also the corresponding
xi dependence is changed between a delta function and a
continuous function. One can calculate the evolution of the
probability distribution of a single bond with index k in the
bound state (qk = 1) by summing over all the other states and
integrating over their distribution of bond stretch
∏

i �=k

∫ ∑

{q}
∂t p(x, t, q) dxi

= −∂xk

∏

i �=k

∫ ∑

{q}
[v(x)p(x, t, q)] dxi

− krupt(xk)p(xk, t, qk = 1) + δ(xk)

{
kbind p(t, qk = 0)

−
∏

i �=k

∫ ∑

{q}
[v(x)p(x, t, q)|xk =0] dxi

}
. (8)

The remaining equation for the unbound state (qk = 0)
corresponds to equation (6). This equation illustrates that
coupling of the bond states is only mediated by the common
speed v(x) which appears in the integrals on the right-hand
side. Given that v(x) depends on the stretch of all bonds, these
integrals are the expectation value of v(x) under the condition
that bond k has stretch xk . In a mean field ansatz we write here

∏

i �=k

∫ ∑

{q}
qkv(x)p(x, t, q) dxi ≈ 〈v〉p(xk, t, qk = 1). (9)

Using this approximation in equation (8) the probability
distributions of different bonds factorize. We thus recover the
equation for a single bond, equation (4), where we now replace
v(x) with an average speed 〈v〉 which needs to be determined
separately. This approximation is expected to work well if
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the number of bound bonds is high, so that the effect of one
single bond does not significantly change the velocity. We
also introduce a mean field equation of motion, which we use
together with equation (9) for an approximation of 〈v〉:

〈v〉 = FD

ξ
− N f (〈v〉)

ξ
, (10)

where f (〈v〉) is the average force transmitted by each linker.
Equations (2), (4), (5) and (6) can be solved for the steady state:

p(x, q = 1) = p(q = 0)k+eε−(1−erx )

〈v〉 (11)

p(q = 0) = 1

1 + ε+eε−�ε−(0)
(12)

with ε− = k−/r〈v〉 and ε+ = k+/r〈v〉. Thus while unbound
bonds only exist with extension x = 0, the distribution
of the extension x for the bound bonds decays faster than
exponential from x = 0 to positive values of x . The average
force transmitted by each linker can be calculated from the
expectation value of the stretch:

f (〈v〉) = κ

∫ ∞

0
x p(x, q = 1) dx

= κ
p(q = 0) k+

〈v〉
∫ ∞

0
xeε−(1−erx ) dx, (13)

where the last integral could also be formally expressed as
a Meijer function. For high average speeds the transmitted
force becomes zero: lim〈v〉→∞[ f (〈v〉)] = 0. For large
ε− (fast unbinding), one can perform asymptotic expansions
of the integral in equation (13) and the Gamma function in
equation (12). This leads to:

f (〈v〉)weak = k+
(k− + k+)

κ〈v〉
k−

,

p(q = 0)weak = k−
(k− + k+)

.

(14)

In this regime, the average friction force is simply the spring
constant κ times the typical extension 〈v〉/k− times the mean
number of closed bonds.

4. Estimation of parameters

In the following we give order-of-magnitude estimates for the
different model parameters in order to compare our theoretical
results to experimental data. A typical extension of an adhesion
site in the direction of flow is 1 μm, while the perpendicular
extension is considerably smaller. With a typical adhesion
protein spacing of 30 nm we estimate the ligand number to be
10 � N � 1000. Mechanical connections between the actin
cytoskeleton and the substrate involve a hierarchy of different
bonds, including those mediated by adapter proteins such as
talin as well as the integrin–matrix bonds. Experiments have
shown that the linkage between integrins and their extracellular
ligands is quite strong [27, 28], whereas the intracellular bond
to actin is relatively weak [29]. Therefore, one expects that
the linkage between the cytoskeleton and the extracellular side

predominantly breaks at one site, for example the connection
between actin and talin. However, the effective spring constant
of the bond will depend on the contributions of all the different
proteins and the elastic environment. These can only be
inferred indirectly. AFM measurements report overall cell
stiffnesses of 0.01–5 pN nm−1 [30, 31]. We expect that the
contribution of elasticity of the ECM and intracellular effects
on small length scales will give a somewhat larger spring
constant of around κ = 10 pN nm−1. Typical reaction lengths
xb of adhesion bonds are about 0.2 nm [31], thus setting r to
about 0.5 nm−1. The force-free unbinding rate k− is, for most
biological adhesion bonds, on the scale of 1 s−1 and we will
hence use this value.

Concerning the binding rate k+ the situation is much more
complex. Binding constants can only be inferred from a few
known affinity measurements. Equilibrium (bulk) association
constants for the binding of talin-like proteins to integrins or to
actin are known to be in the range of 106–107 M−1 (1 M−1 ≈
1.7 nm3) [32–34]. Integrins have at least two different activity
states in which their binding rates are very different. Evidence
for this is that the binding affinity of integrins to extracellular
matrix ligands in the inactive state is reported to be <106 M−1,
while it increases more than ten fold in the active state [35–37].
Interestingly, the unbinding rate seems to change relatively
little with activation of integrins. The existence of this affinity
switch suggests that the process of linkage formation between
actin and the extracellular ligands is largely limited by integrin
binding in the inactive state, while intracellular bond formation
is limiting in the active state.

Application of the above values to the FA structure is
impeded by the fact that spatial confinement of FA proteins
to the two-dimensional adhesion structure modifies diffusion
and thus also the affinity. Due to experimental difficulties
there are to date not many reliable measurements of this
effect. Simple theoretical estimates suggest that a factor of
1/ϑ ≈ 1/20 nm is appropriate for the conversion of the
three-dimensional association constant to its two-dimensional
counterpart [21]. However, experiments showed that this
factor is much lower, which is possibly due to a reduced
accessibility of binding sites in two dimensions [38, 39]. Here
we accordingly use 1/ϑ ≈ 10−4 nm. We estimate the number
of binding events per second with the following formula: k+ ≈
Kbulk × k− × 1/ϑ × �b. Using k− ≈ s−1 and linker density
�b ≈ 2×10−4–10−3 nm−2 [40] we find for the inactive ligand
complex 106 nm3 s−1 · 10−4 nm−1 · �b ≈ 0.02–0.1 s−1. The
binding rate for active integrins can accordingly be expected to
be above 1/s, which may also be necessary to permit growth
of the adhesion structure which dissociates with an unbinding
rate of k− ≈ s−1.

The internal viscous friction coefficient ξ summarizes
many different effects and is therefore not easy to estimate.
Its units are viscosity × length and in a hydrodynamic picture
it would be the drag coefficient of a slender fiber. A rough
estimate of the viscous friction coefficient can be based on the
observation that in the lamellipodium of migrating cells, we
hardly have any adhesion sites and the actin velocity ranges up
to 100 nm s−1 [14]. Corresponding polymerization/membrane
forces are about FD ≈ 5–100 pN. This implies that ξ is on
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Figure 2. Biphasic relationship between dimensionless mean speed and mean friction. (a) First moments of friction and speed obtained from
simulation (N = 25, ξ ∗ = 1) and the corresponding mean field approximations. (b) Average speed at maximal average friction depends
almost linearly on binding rate. (c) Average speed at maximal average friction becomes independent of ξ ∗ and N for high viscous friction.
(d) Average speed at maximal average friction strongly depends on N for low ξ ∗.

the order of 1 pN s nm−1 but will vary strongly depending on
how crosslinked the actin meshwork is [3]. In particular, it
is expected to be higher in the lamellum (where it flows over
the adhesions) than in the lamellipodium (where hardly any
adhesions exist). This estimate can be compared to published
values of the effective long-timescale viscosity in the actin
cortex when converting the viscosity to a hydrodynamic drag
coefficient of a slender fiber using typical length scales of the
fiber (length 2 μm, width 1 nm). For a viscosity of 300 Pa s
(see e.g. [41, 42]) the drag coefficient is about 0.6 pN s nm−1,
which agrees reasonably well with our estimate from the
experimental data.

In summary, our model parameters are driving force FD,
ligand number N , internal viscous friction coefficient ξ , bond
stiffness κ , unstressed unbinding rate k−, binding rate k+ and
reactive compliance r . In the following we will rescale time
with the unstressed unbinding rate k−, length with the inverse
reactive compliance 1/r and force with κ/r . Reference values
for driving force FD, velocity v and internal viscous friction
coefficient ξ are therefore 20 pN, 2 nm s−1 and 10 pN s nm−1,
respectively. Dimensionless quantities are indicated by an
asterisk. For example, for a typical actin speed of v =

10 nm s−1 we have v∗ = v r/k− = 5. The above estimate
for internal friction in the lamellipodium gives ξ∗ = 0.1. This
value is expected to increase in the lamellum, where retrograde
flow couples to the adhesions.

5. Results

Figure 2(a) displays the average elastic friction (traction) force
〈 f 〉∗ transmitted at an average speed 〈v〉∗ as obtained from the
computer simulations of the full model (N = 25, ξ∗ = 1).
Parameters in the simulation were chosen here such that a good
correspondence between the mean field model and simulations
could be demonstrated. The relation between average friction
and speed is always distinguished by a maximum in friction
at intermediate speeds which can also be found analytically
from the mean field approximation. The occurrence of this
maximum can be explained in the framework of the mean
field model by the fact that the average transmitted force
at a closed bond rises monotonously with speed, while the
probability of being bound decreases at higher speed. The
combination of both factors produces the characteristic shape
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Figure 3. Transition regime at intermediate driving forces. (a) Color-coded probability distribution for speed in numerical simulations and
first moment of speed in simulation and mean field approximation (N = 25, ξ ∗ = 0.03, k∗

+ = 10). Irregular motion with large fluctuations
occurs at intermediate driving forces and is characterized by a broad, multi-modal probability distribution. (b) Parameter dependence of the
occurrence of a regime with strong speed fluctuations as shown in (a). This occurrence was determined numerically through the strong
sensitivity of the transmitted friction force 〈 f 〉∗ on the (constant) driving force F∗

D in the critical regime. Dotted line for N = 50, full line for
N = 25.

seen in figure 2(a), with average friction increasing much more
strongly at low 〈v〉∗ than decaying at high speed.

The maximum in the friction–speed plot offers a
convenient way to characterize the behavior of the simulated
model and to compare it with the mean field approximation.
In figure 2(b) we plot the binding rate dependence of 〈v〉∗ at
maximum average friction 〈 f 〉∗. If the timescale of binding
is much shorter than the timescale of viscous relaxation,
1/k+ � ξ/κ , one expects a good transmission of force
because fast rebinding weakens cooperative effects. Indeed,
here the results from simulations agree well with the analytical
approximation. Within the mean field model it can be shown
that the relationship between binding rate k∗+ and speed 〈v〉∗ at
maximum friction obeys the following asymptotic relation for
high binding rates:

k∗
+ ≈

(
1 + 2

6(γe − ln 〈v〉∗) + π2

6(γe − ln 〈v〉∗)2 − π2

)
〈v〉∗ − 1, (15)

where γe is the Euler–Mascheroni constant. The linear relation
can be clearly observed in the simulation results for large k∗+.
For the limit k∗+ → 0 the location of maximal 〈 f 〉∗ converges
in the mean field model to a constant 〈v〉∗ ≈ 2.568. This
mean field behavior at low binding rates is in contrast to the
simulation results, where the dependence of speed at maximum
friction depends on ξ∗ and N . However, the mean field model
can also be recovered in the simulations for low k∗+ when the
viscous friction coefficient is high, 1 � ξ∗. Therefore we plot
in figure 2(c) the dependence of 〈v〉∗ at maximum average
friction on the viscous friction coefficient ξ∗. If 1 � ξ∗
(meaning that the timescale of viscous relaxation is longer
than the timescale of unbinding) one generally sees a good
correspondence between mean field model and simulations.
In the mean field approximation, the location of maximal
friction does not depend on ξ∗. For lower values of ξ∗,
the average speed at maximum friction shows an interesting
behavior which results from irregular slip and stick motion
which we will discuss below.

Figure 2(d) shows the dependence of average speed 〈v〉∗ at
maximum average friction on the number of linkage molecules
N . In the mean field approximation, the transmitted elastic
friction is simply linear in N . We consider whether a high
number of ligands N is sufficient to reproduce this mean field
behavior in our simulations at ξ∗ < 1. As can be seen
from figure 2(d), the simulation results approach the mean
field solution for large N , but one would need N � 104 to
obtain a reasonable agreement between both. The required
numbers of ligands are beyond what we would expect for the
biological system in question (see section 4). We conclude that
cooperative effects are suppressed in our model less efficiently
by a high number of ligands than by a high viscous friction
coefficient.

In summary, the mean field description breaks down for
ξ∗ < 1. This is also reflected by the fact that the location
of maximum friction at low ξ∗ in figures 2(b)–(d) shows a
non-monotonous behavior. To investigate this in detail we
color code in figure 3(a) the probability distribution for the
occurrence of speed in a numerical simulation (N = 25, ξ∗ =
0.03, k∗+ = 10). As always, the constant driving force F∗

D
is fixed. Here this independent variable is located on the y-
axis. For the comparatively low viscous friction coefficient
used in this simulation, the distribution of speeds displays an
interesting multi-modal appearance. The figure demonstrates
that for low F∗

D the system is dominated by the elastic
contribution of the bonds and one has slow creep motion. For
intermediate F∗

D around a value of 20, the fiber occasionally
detaches and the amplitude of speed fluctuations increases. It
is here that the distribution of speeds shows two or even three
pronounced maxima. The fluctuations and the multi-modal
appearance of the speed distribution are reminiscent of a phase
transition. At high driving force the motion is dominated by
the viscous friction and the contribution of the bonds can not
arrest the fiber anymore.

We can again employ our analytic mean field approxima-
tion to qualitatively explain the simulation results. Within this
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Figure 4. Active change of the binding rate enables cells to switch from viscous dissipation to elastic force transmission. (a) Relative change
of average speed and average elastic friction power with varying binding rate (F∗

D = 10, N = 25). Most elastic power in the bonds is
dissipated in the transition region. (b) Dependence of the transition point between high and low speed (half maximum) on various model
parameters.

approximation, the driving force FD can be expressed through
the mean field equation of motion equation (10) as a function
of 〈v〉. While viscous friction is linear in 〈v〉, the elastic fric-
tion shows a biphasic dependence on speed. Both contribu-
tions together result in a bistable regime where one has mul-
tiple solutions for the speed 〈v〉 at a given constant value for
the driving force FD (violet line, figure 3(a)). Note that this
plot does not show the biphasic elastic friction, which decays
with increasing 〈v〉. To assess how the onset of this transi-
tion depends on the model parameters, we search in our ana-
lytic approximation (where FD is written as a function of 〈v〉)
for a saddle point. Critical points in the k+–ξ plane are then
given by ∂〈v〉 FD = ∂2

〈v〉 FD = 0. Qualitatively, we find that a
discontinuous transition between different speeds occurs only
for intermediate values of k∗+. This is so because the system is
dominated at low k∗+ by the viscous friction, and rare binding of
bonds can not arrest the fiber. High k∗+, on the other hand, pre-
vents a sudden detachment of the fiber, and hence also damps
speed jumps. The value of ξ∗ below which we can have discon-
tinuous speed changes increases in the mean field linearly with
N . Thus, increasing the ligand number and driving force with-
out changing ξ promotes the occurrence of an unstable regime
with large speed fluctuations.

A direct comparison of the picture suggested by the mean
field model with the results from stochastic simulations is
impeded by the lack of a clear analog to the critical point in
the simulations. However, in a certain range of parameters
we observe a strong change in 〈 f 〉∗ if the (constant) driving
forces F∗

D are changed only slightly between different runs of
the simulation. This sudden change happens e.g. in figure 3(a)
at intermediate F∗

D and is accompanied by strongly fluctuating
speed values. Our numerical criterion for the occurrence of a
quasi-discontinuous transition with strongly fluctuating speeds
was here that ∂F∗

D
〈 f ∗(F∗

D)〉 � −5.5 for any (constant) value of
F∗

D at fixed k∗+ and ξ∗. The results are plotted in figure 3(b) for
two values of N . Qualitatively, the approximate state diagram
shows the same shape as the lines of critical points explained
above for the mean field approximation.

Regarding the biological system of interest, the binding
rate k+ constitutes the regulatory parameter which is most
likely to be actively changed by the cell. For very low
binding rates, internal friction dominates the motion, while for
high binding rates the elastic friction dictates a creep motion.
Figure 4(a) depicts the corresponding transition for two values
of the viscous friction coefficient (F∗

D = 10, N = 25).
The transition from the viscous regime at high speed to the
elastic regime occurs within a zone of 10–100 fold change in
the binding rate. Lowering the viscous friction leads to an
increased maximal slope of the curve, which again results in
the mean field approximation in a discontinuity. A comparison
of the analytical approximation and simulations showed that
the analytical description, in general, works better in the
low speed elastic regime. Plotting the dependence of bound
linkages on k∗+ results in a curve which is complementary to
the curve for 〈v〉∗ in figure 4(a) (not shown). However the
transition from low to high fractions of bound linkages occurs
at slightly different values of k∗+.

Energy dissipation due to elastic friction at the adhesion
is quantified by the friction power 〈P〉 = 〈v · κ

∑
qi xi〉. It

shows a peak at the transition from low to high speed where
the relative height of the peak in friction power decreases with
increasing viscous friction coefficient, compare figure 4(a).
The binding rate at which the transition from the viscous to
the elastic regime occurs depends on all free parameters in our
system. In figure 4(b) we plot this dependence for N = 25.
While the binding rate at the transition can increase or decrease
with ξ∗, depending on F∗

D, an increasing driving force always
leads to a shift of the transition to higher binding rates (see
inset). For a number of ligands N � 10 the binding rate at
the transition scales approximately as 1/N (data not shown).
Summarizing, we find that a 10–100 fold change of the binding
rate is the appropriate range to control whether the fiber is in
the elastic creep regime, where dissipation of energy is small,
or in the viscous regime, where most of the power is dissipated
to the surrounding viscous medium.
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6. Discussion

Motivated by recent experiments on the transmission of force
from the flowing actin cytoskeleton to the cell substrate [14],
the main focus of this work was to investigate in a simple
theoretical model how dynamical bonds transmit force through
a moving interface. Related models have been studied in the
past in the context of tribology [16–18], but here we study this
question with a special focus on the cellular system. Adhesion
sites are modeled as collections of dynamically binding and
unbinding bonds forming elastic connections to a rigid slider
which is dragged through a viscous intracellular environment
by a constant driving force. Our model results in surprisingly
rich behavior, including a biphasic friction law and a stick–
slip regime, which both appear to be highly relevant for the
biological system of interest. Due to its simplicity, the model
introduced here can be used as a reference and starting point
for more realistic descriptions of the dynamics of force-bearing
elements in biological systems.

Experimental results demonstrating a maximum in cellular
traction at local actin speed around 10 nm s−1 [14] leave
room for a number of interpretations. The finding is closely
related to the spatial distribution of adhesion molecules but
relatively independent of biochemical perturbations such as
interference with the small GTPases Rho and Rac. Therefore,
here we focused on generic effects resulting from sliding
friction at moving interfaces. In setting up the model, we
made some crucial assumptions which are motivated by the
biological system of interest. First, we have summarized all
dissipative processes, including actin polymerization at the
leading edge, crosslinker dynamics in the gel, and molecular
motor activity at the back, by an effective viscous friction
coefficient ξ . In the future, one can envision introducing
more detailed modeling of the material properties of the
actin gel, in particular dynamic rearrangements within the
gel [43]. Another core assumption of the presented model
is the presence of a constant driving force FD. Here more
detailed models for actin polymerization and force generation
by molecular motors are possible, for example as used recently
for modeling filopodia retraction [19]. Note that introducing an
internal viscous friction coefficient ξ can also be interpreted as
arising from a linear force–velocity relation for the molecular
motors driving the flow.

To qualitatively understand our simulation results we use
a mean field model where not only the driving force FD is
constant but where speed v(t) equals a constant 〈v〉 for all
times. This limit corresponds to a constant speed ensemble
where the bond states do not couple via equation (1) because
rupture does not entail an acceleration of the slider. Within
the framework of our stochastic model, we find that high
internal friction ξ∗ � 1 diminishes the role of cooperativity
and thus allows for a mean field description. This then implies
that the speed 〈v〉 at which the transmitted friction 〈 f 〉 is
maximal depends neither on the number of bonds N nor on
the exact value for the effective viscosity. The value of the
transmitted friction force simply scales with the number of
linkage molecules.

In the limit of high viscous friction coefficient ξ∗ � 1
the dimensionless binding rate k∗+ dominates the system. The

speed at maximal friction 〈 f 〉∗ is a unique function of this
parameter. The maximum in 〈 f 〉∗ can possibly be observed in
experiments. This could provide a way to estimate properties
of adhesion proteins which are otherwise hard to assess. For
example, if one assumes that one can apply this reasoning
to the experimental data in [14], then a speed at maximum
traction of 10 nm s−1 with r = 0.5 nm−1 would lead to
k+/k− ≈ 1.3.

For a small viscous friction coefficient, the mean field
description of our system fails. When the timescale of viscous
relaxation becomes smaller than the timescale of bond rupture,
ξ/κ < 1/k− (and not ξ/κ � 1/k+), the probability
distribution for the bond states can no longer be approximated
by a factorized distribution. Then the mean field equation of
motion (10) becomes inappropriate. Here the rupture of one
bond can trigger rupture cascades similar to ones described
before [24]. Motion at low ξ accordingly consists of alternating
phases of stick and slip. The viscous friction coefficient below
which we find this strongly irregular motion increases with the
number of bonds. Thus a moderate increase in the number
of ligands is not necessarily sufficient to stabilize adhesion
against forces. The rupture cascades and irregular motion
patterns found in our model are reminiscent of the motion
of actin in the lamellipodium, as observed in experimental
data [14].

It is interesting to note that the intermediate region
between elasticity-dominated creep and viscosity-dominated
flow is special for energetic reasons. Although the averaged
power dissipated by the cellular machinery is, in our model,
proportional to the average speed, one can ask whether the
power is spent efficiently. In the transition zone between high
and low flow speeds much power is invested in friction with
the substrate while both the transmitted force and the speed of
the fiber are comparatively low. Accordingly, neither transport
nor force transmission can be accomplished efficiently in this
regime.

In summary, we have proposed a simple model to assess
how the dynamics of individual bond formation and rupture
could translate into a non-linear relationship between mean
values of friction and speed at adhesion sites, and how
the binding processes at the moving interface compete with
dissipation inside the cell. In the future our simulations could
be extended in many directions to accommodate more detailed
modeling of such cellular systems. In particular, it would
be most interesting to replace the effective internal viscous
friction coefficient used here by more microscopic models for
competing binding processes, thus modeling both dissipation
mechanisms on an equal basis.
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