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Outline – Part I

• Extending axionic field ranges by gauging

• Interplay with the Swampland (Distance) Conjecture

Outline – Part I

• Conjecture-independent constraints from
gravitational instantons / wormholes ?

• General importance of wormholes (a reminder)



Motivation

• Inflation (and cosmology more generally) might produce
evidence for large field displacements: ∆ϕ� MP .

• This is hard to realize in string theory and may be constrained
by general no-go theorems in quantum gravity ...

Banks, Dine, Fox, Gorbatov ’03

The swampland conjecture
Vafa ’05, Ooguri/Vafa ’06

The weak gravity conjecture
Arkani-Hamed/Motl/Nicolis/Vafa ’06

• However, even accepting (certain forms of) these conjectures,
the implications for large ∆ϕ are far from clear

• A unique opportunity to confront quantum gravity and reality!



Introduction: Weak Gravity Conjecture

• Roughly speaking: ‘Gravity is always the weakest force.’

• More technically: As a 4d U(1) gauge coupling goes to zero,
g → 0, the low-energy EFT develops a global symmetry.

• This should be censored. The censoring occurs by new physics
at the scale Λ ∼ gMP , which also goes to zero.

(It could involve one or many charged particles, a cutoff, ...
→ different forms of the conjecture.)

cf. talks by Rudelius, Ibanez, Shiu, Cottrell, ...



Introduction: Weak Gravity Conjecture for axions

• For axions, the charged ‘particles’ are the instantons:

S ∼
∫

f 2 (∂ϕ)2 + Sinst + iϕ(xinst.) .

• With the substitution g → 1/f and m→ Sinst one finds

m < gMP ⇒ S < MP/f .

Thus, for f > MP , the instanton-induced potential

V (ϕ) ∼ e−Sinst cos(ϕ) + e−2Sinst cos(2ϕ) + · · ·

becomes uncontrolled and large f appears to be censored.



Introduction: The Swampland Conjecture

• Roughly speaking: ‘If one moves a long distance in field space,
the cutoff comes down exponentially.’

• Here, the relation to inflation (not axionic but rather
modulus-inflation) is immediate.

• Note however that, phenomenologically, H � MP , so the
above is not necessarily a problem.

For recent work developing
Vafa ’05, Ooguri/Vafa ’06

see, e.g.

Palti/Baume, Palti/Klaewer ’16, Blumenhagen/Valenzuela/Wolf,
AH/Henkenjohann/Witkowski ’17, Heidenreich/Reece/Rudelius,
Grimm/Palti/Valenzueala ’18



Winding Inflation

• Now, let us see how far one gets in terms of
‘counterexamples’:

• Even in a small field space a long trajectory can be realized if
the potential is appropriate.

Kim/Nilles/Peloso ’04

• However, getting such an ‘instantonic’ potential is hard and
may in particular be forbidden by the WGC.



Winding Inflation (continued)

• But there is a simple, perturbative way of enforcing the
desired trajectory: By gauging à la Dvali.

• We will refer to this as ‘Winding Inflation’.

AH/Mangat/Rompineve/Witkowski ’14

|F0|2 → |F0 + ϕx + Nϕy |2

• This is can be realized very explicitly in the flux landscape,
with N being the flux number.



Concrete realization at (partially) large complex stucture

• Let z1, · · · , zn, u, v be complex structure moduli
of a type-IIB orientifold, let Im(u)� Im(v)� 1.

K = − log
(
A(z , z , u − u, v − v) + · · · e2πiv + c.c.

)
W = w(z) + f (z)(u − Nv) + · · · e2πiv

• Without exponential terms, it is clear that W leaves one of
the originally shift-symmetric directions Re(u) and Re(v) flat

• In supergravity, generically: fluxes ↔ gauging

• Remarkably, the subleading cosine-potentials ‘conspire’ to
fulfil at least the so called ‘mild form’ of the WGC



An Aside:

• Recently, the same gauging idea has been discussed as a way
to evade the WGC for 1-forms.

Saraswat ’16

• My personal feeling is that

(a) This is very interesting to explore further.

(b) It may fail since the UV theory may not permit N � 1
together with Λ ∼ MP , as required.

• The technical reason might be as follows:

N � 1 ⇒ Ratio of certain radii is large (e.g. RA/RB � 1 )
⇒ Λ� MP .

(This logic is not applicable in the axionic case since Λ does
not enter. See, however, below....)



A simple, torus-based model for transplanckian axions

(toy-model for winding inflation)

• Type IIB on T 6/Z2 with 64 O3 planes.

• Using standard technology, we can generate

W = (Mτ1 − Nτ2) (τ − τ3)
Kachru/Schulz/Trivedi ’02
Gomis/Marchesano/Mateos ’05
...

(The explicit F3/H3 is easy to state.)

• In the interests of time, the rest will be described in pictures...



• Recall that a torus can be viewed as a lattice in C and its
shape is parametrized by τ ∈ C.

• There are many identifications
(e.g. τ = i and τ = i + 1 correspond to the same torus)

• Moreover, the metric in the τ -plane (both in math in the 4d
EFT with a complex modulus field τ) reads

ds2 =
dτ dτ

4 (Imτ)2
‘Hyperbolic plane’



Fig. from A. Zorich, ‘Flat surfaces’

• The fundamental domain is an infinitely long, vertical strip
with i ×∞ corresponding to a very thin torus.



• The modulus space has an infinite extension, but the cutoff
comes down exponentially fast if one goes there
(due to light winding strings).

• The ‘axionic’ horizontal direction
is at most O(1) in size (f . Mp)

• Now, if the torus carries flux
(think of rubber bands marking the cycles),
the picture changes.

• Some of the identifications are lost
and the fundamental domain increases

(≡ fund. domain of congruence subgroups of SL(2,Z)).



• The cusp or ‘throat’ becomes much wider (super-planckian f ),

...but the geodesic distances
remain short (∼ ln(1/cutoff))

• We formulate this in a ‘moduli space size conjecture’ which
tries to unify the axionic WGC and Swampland Conjecture



Intermediate summary / transition to part II

• It appears that the swampland conjecture extends in a
non-trival way to axions.

• This extension does not preclude transplanckian f .

• Implications for large-field inflation are not a priori negative.

• One needs more detailed explicit stringy models and/or finer
conjectures (work in Progress Palti, Junghans, Schachner...)

• In the meantime, let us return to ‘generic quantum gravity’
and how it breaks shift symmetry in a
‘conjecture-independent’ way ....



No-go argument II: (Gravitational) instantons

• In Euclidean Einstein gravity, supplemented with an axionic
scalar ϕ , instantonic solutions exist:

Giddings/Strominger ’88
. . .

• The ‘throat’ is supported by the kinetic energy of ϕ = ϕ(r),
with r the radial coordinate of the throat/instanton.

• The relevance for inflation arises through the induced
instanton-potential for the originally shift-symmetric field ϕ.

Montero/Uranga/Valenzuela ’15



Gravitational instantons (continued)

• The underlying lagrangian is simply

L ∼ R+ f 2|dϕ|2 , now with ϕ ≡ ϕ+ 2π .

• This can be dualized (dB2 ≡ f 2 ∗ dϕ) to give

L ∼ R+
1

f 2
|dB2|2 .

• The ‘throat’ exists due the compensation of these two terms.
Reinstating MP , allowing n units of flux (of H3 = dB2) on the
transverse S3, and calling the typical radius R, we have

M2
P R−2 ∼ n2

f 2
R−6 ⇒ MP R2 ∼ n

f
.



Gravitational instantons (continued)

• Returning to units with MP = 1, their instanton action is

S ∼ n/f (with n the instanton number).

• Their maximal curvature scale is
√

f /n, which should not
exceed the UV cutoff:

f /n < Λ2

• This fixes the lowest n that we can trust and hence the
minimal size of the instanton correction to the potential V (ϕ):

δV ∼ e−S ∼ e−n/f ∼ e−1/Λ2



Gravitational instantons (continued)

• For gravitational instantons not to prevent inflation, the
relative correction must remain small:

δV

V
∼ e−1/Λ2

H2
� 1

• For a Planck-scale cutoff, Λ ∼ 1, this is never possible

• However, the UV cutoff can in principle be as low as H

• Then, if also H � 1, everything might be fine....

δV

V
∼ e−1/H2

H2

AH, Mangat, Rompineve, Witkowski ’15



• At least for high-cutoff models:

Can one obtain a reasonably model-independent bound
from gravitational instantons?

AH/Mangat/Theisen/Witkowski ’16

Note:

• Our analysis also includes the closely related issue of
(singular) ‘cored instantons’, which have been brought up by

Heidenreich, Reece, Rudelius ’15

• For recent work on the emedding in string theory see...

Hertog/Trigiante/Van Riet ’17



Very rough summary of results

• Look at the case where we expect the strongest bound:
A string model with gs = 1 on T 6 at self-dual radius.

• Need to decide when to trust a wormhole / extremal instanton

(i.e., what is the smallest allowed S3-radius rc )

The following two choices appear ‘natural’:

2π2r3
c = V1/2

self−dual ⇒ rcMP ' 1.3 ⇒ e−S ' 10−68

2πrc = V1/6
self−dual ⇒ rcMP =' 0.56 ⇒ e−S ' 10−13

Surprisingly weak bounds!



...However, beyond inflation, wormholes remain very interesting,
both conceptually and phenomenologically

Gravitational instantons - Small-f axions

see e.g. Alonso/Urbano ’17

• For example, for a QCD axion with (relatively) high f , the
wormhole effect might be relevant:

V (ϕ) = Λ4
QCD cos(ϕ) + r−4

c e−Sw/2 cos(ϕ+ δ) .

• It turns out that for f & 1016 GeV the solution to the strong
CP problem is lost.

• Interesting positive observational consequences exits in the
context of black-hole superradiance and ultralight dark matter.



Gravitational instantons / wormholes - conceptual issues

• Motivated by the above, it is worthwhile revisiting some very
fundamental conceptual issues of (euclidean) wormholes.

Hawking ’78..’88, Coleman ’88, Preskill ’89
Giddings/Strominger/Lee/Klebanov/Susskind/Rubakov/Kaplunovsky/..
Fischler/Susskind/...

Review by AH, P. Soler, T. Mikhail, ...to appear...

• First, once one allows for wormholes, one has to allow for
baby universes.

• Second, with baby universes comes a ‘baby universe state’
(α vacuum) encoding information on top of our 4d geometry.



Conceptual issues (continued)

• Crucially, α-parameters remove the disastrous-looking
bilocal interaction.

exp

(∫
x1

∫
x2

Φ(x1)Φ(x2)

)
→

∫
α

exp

(
−1

2
α2 + α

∫
x

Φ(x)

)

• In our concrete (single-axion) case, an α parameter now
governs the naively calculable e−S cos(ϕ/f )-term.

• But, what is worse, all coupling constants are ‘renormalized’
by α parameters are hence not predictable in principle.



Conceptual issues (continued)

• Most naively, 4d measurements collapse some of the many α
parameters to known constants.

• But in a global perspective, both different 4d geomtries and α
parameters have to be integrated over.

• But this leads to the
‘Fischler-Susskind-Kaplunovsky catastrophy’.

• The problem is that, through certain higher operators, high
densities of even very large wormholes are rewarded;
→ exponential suppression overcome.

• Finally, just integrating over the α parameters is clearly not
sufficient - one needs to consider their full quantum dynamics.



Conceptual issues (continued)

• Indeed, consider the case of 1+1 dimensions with a number of
scalar fields (in addition to gravity).

• This is, of course, well known as string theory and the
α parameters characterize the geometry the target space.

Polchinski, Banks/Lykken/O’Loughlin,
Cooper/Susskind/Thorlacius,
Strominger ’89...’92

• The latter has a quantum dynamics of its own, the analogue
of which in case of 3+1 dimensions is completely unknown.

• All this raises so many complicated issues, that one might
want to dismiss wormholes altogether.



Conceptual issues (continued)

• But this is not easy, for example because we know that in
string theory wormholes correspond to string loops and are a
necessary part of the theory.

• Thus, forbidding for example topology change in general does
not appear warranted.

• Is there a good reason to forbid
topology change just in d > 2 ?

• Arguments have been given that the euclidean
Giddings-Strominger solution has negative modes and should
hence be dismissed.

Rubakov/Shvedov ’96, Maldacena/Maoz ’04,
see however Alonso/Urbano ’17, ...

• But, while this is even technically still an open issues, it does
not appear to be a strong enough objection ....



Conceptual issues (continued)

• Indeed, once a non-zero amplitude

universe → universe + baby-universe

is accepted, the reverse process is hard to forbid.

• As a result, one gets all the wormhole effects.

• The negative mode issue may be saying:
‘Giddings-Strominger’ does not approximate the amplitude well.

• ..hard to see, how it would dispose of the problem altogether..

For further problems (and possible resolutions) see e.g.
Bergshoeff/Collinucci/Gran/Roest/Vandoren/Van Riet ’04,
Arkani-Hamed/Orgera/Polchinski ’07, Hertog/Trigiante/Van Riet ’17



Summary/Conclusions

• Axionic directions may be extended in fluxed geometries,
violating a possible ‘subplanckian f conjecture’

• But the corresponding moduli-space-size does not grow faster
than logarithmic. Consequences for inflation remain open....

————-

• Euclidean wormholes are the universal, semiclassical
counterpart of instantons

• They do not constrain inflation strongly, but may have other
pheno applications ‘at small f ’

• They come at the price of α vacua (and other disasters)

• Worthwhile reviving this fundamental unresolved issue?


