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The WGC is interesting as ...
Arkani-Hamed/Motl/Nicolis/Vafa ’06

1) A possible fundamental feature of quantum gravity

• It quantifies the non-existence of global symmetries

(If g → 0 is impossible, we need to know gmin.
The WGC states gmin = m.)

2) Since it may constrain large-field inflation / relaxation...
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Rudelius; Ibanez/Montero/Uranga/Valenzuela; Brown/Cottrell/Shiu/Soler;
Bachlechner/Long/McAllister; AH/Mangat/Rompineve/Witkowski;
Junghans; Heidenreich/Reece/Rudelius; Kooner/Parameswaran/Zavala;
Harlow; AH/Rompineve/Westphal; . . . ’15; Conlon/Krippendorf . . . ’16
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The (generalized) weak gravity conjecture

• The basic underlying lagrangian is
(for p-dim. objects in d dims.; with MP ≡ 1)

S ∼ 1

g2

∫
(Fp+1)2 + T

∫
p−dim.

dV +

∫
p−dim.

Ap

with
Fp+1 = dAp .

• To avoid stable extremal black branes, one requires charged
objects with sub-extremal mass (tension):

q/T ≥ γ1/2
p,d , where γp,d =

p(d − p − 2)

d − 2
.

• As one clearly sees, this fails for instantons and objects with
codimension 1 & 2 (domain walls and cosmic ‘strings’).

Heidenreich/Reece/Rudelius ’15



Note:

• This failure outside the range 0 < p < d−2
is not unexpected:

• Indeed, the argument that
‘the WGC protects us from too many stable objects’
fails also intuitively outside this range.

see e.g. Susskind ’95(E.g., strings and domain walls induce

no long-range gravitational force.)

However:

• The arguments that
‘the WGC protects us from the global-symmetry limit’
and
‘string theory always obeys the WGC’
support the conjecture even outside the above range.



• Arguments supporting/quantifying the WGC
outside the ‘canonical range’ of 0 < p < d−2 include

• string dualities
Brown/Cottrell/Shiu/Soler ’15

• consistency of generic KK-reductions
• consideration of dilatonic black branes.

Heidenreich/Reece/Rudelius ’15

(‘lattice WGC’)

• Here, we will try develop the duality argument....



• In fact, the key is not in the dualities, but rather in
the same CY can underlie different 4d objects.

• Hence, there ought to be a

Geometric WGC

• Consider a IIA-CY X with D2-branes wrapped on 2-cycles.

• Let wi be a basis of H2(X ,Z).

The metric on X induces a metric for 2-forms,

Kij ≡
∫

X
wi ∧ ?wj ,

and on the (dual) space of 2-cycles, K ij .

• We make the standard ansatz

C3 = Ai
1(x) ∧ wi (y) .



• Focus on 4d particles coming from D2s on a particular cycle Σ

• The relevant 4d action reads (ls = 1)

S4 ∼ (VX/g
2
s )

∫ √
g R +

∫
Kij F

i
2 ∧ ?F

j
2 + qΣ

i

∫
world-line

Ai
1

with the charges
qΣ

i =

∫
Σ
w i .

• Note that only a particular combination of Ai
1’s is sourced by

particles ‘from Σ’:

Ai
1 ≡ A1 K

ijqΣ
j (this defines A1) .

• Thus, one arrives at the standard action

S4 ⊃
1

2e2

∫
F2 ∧ ?F2 +

∫
world-line

A1 ,

with e2 given by.....



• With e2 given by

e2 = 2π |qΣ|2 with |qΣ|2 ≡ K ijqΣ
i q

Σ
j .

Here we reinstanted O(1) factors.

Note: Metric on X → natural norm on p-form space
→ natural norm |qΣ| on p-cycle space.

• Finally, use M
2
P = VX/κ

2
10g

2
s together with MΣ = (µ2/gs)VΣ

and impose the WGC:

eMP

MΣ
≥ 1√

2
⇒

|qΣ|V 1/2
X

VΣ
≥ 1

2
.

Thus a particular, purely geometric (rescaling- and
gs -independent) quantity characterizing X is constrained.



• Crucially, the same function appears in WGC constraints on
other objects obtained from other branes wrapped on 2-cycles.

• For example, D4s give domain walls with

eDWMP

TDW
=

(2VX )1/2|qΣ|
VΣ

.

• Thus, using the ‘particle-WGC’, we constrain V
1/2
X |qΣ|/VΣ,

obtaining a precise ‘domain-wall-WGC’:

eDWMP

TDW
≥ 1

2
.

• This goes through for any dimension of the cycle Σ and any
dimension of the brane. Hence, any object in 4d is
constrained by the imposition of the WGC for particles.



• Thus, allowing also for multiple gauge fields,

Cheung/Remmen ’14; Rudelius ’14/’15,
Brown/Cottrell/Shiu/Soler, Bachlechner/Long/McAllister ’15

we find in full generality:

Geometric conjecture:

The convex hull spanned by the vectors (V
1/2
X /VΣ) qΣ

(with Σ ∈ Hp(X ,Z)) contains the ball of radius 1/2.

• Note: At the structural level, this can be understood from the calibration

condition on branes. Details remain to be worked out....

Thanks to F. Marchesano for explaining this point.

• Note: We did not use SUSY, the CY-condition, or the existence of a

SUSY-brane on Σ. So this may be much stronger then the ‘not too

surprising’ BPS-like result.

see also work in progress by Heidenreich/Rudelius/Reece



Constraining axion monodromy with the WGC

Disclaimer:

Only brief summary; for deeper analysis and relation to earlier work...

Kaloper/Lawrence/Sorbo ’08..’11 (see also Dvali ’05)

Brown/Cottrell/Shiu/Soler; Ibanez/Montero/Uranga/Valenzuela ’15

• Let’s assume, based on the above, that
all 4d objects, in particular DWs, are constrained.

• Note: the ‘light’ stringy objects fulfilling the WGC above
are nevertheless always heavier than the KK-scale MKK = Λ.

• Thus, one might conjecture that the magnetic WGC

Λ3 . e2MP

always holds.



• Start from the ‘standard’ monodromy potential
(with ‘instantonic wiggles’)

AH/Rompineve/Westphal ’15

L = (∂ϕ)2 − 1

2
m2ϕ2 − α cos(ϕ/f ) .

Φ

V

The low-energy effective theory
of this model has no scalar but
just a set of discrete vacua

(as in the
Bousso-Polchinski landscape).

(Effective) domain walls are automatically present, but are too
light to give any useful WGC constraint.
(In fact, one may argue that they make the electric WGC useless.)



• Nevertheless, the effective action

S ∼
∫

1

2(e2)2
F 2

4 +

∫
DW

A3

is there and, using the quantization F4 = n e2
2 ,

allows for matching the discrete effective potential

V (F4)eff =
1

2
(e2)2n2

to the previous effective potential

V (ϕ)eff =
1

2
m2(2πnf )2 .

• This implies e2 = 2πmf and hence

Λ3 . e2MP = 2πmf MP .



• In the context of inflation, one has

H ∼ mϕmax . Λ

and hence

Λ3 ∼ m f MP ⇒ ϕmax

MP

.

(
MP

m

)2/3(
2πf

MP

)1/3

.

• There is still lots of parameter room for large-field inflation....



Gravitational Instantons and Moduli Stabilization

• In Euclidean Einstein gravity, supplemented with an axionic
scalar ϕ , instantonic solutions exist:

Giddings/Strominger ’88
. . .

• The ‘throat’ is supported by the gradient energy of ϕ or,
equivalently, by flux of the dual 3-form H3.

• The relevance for inflation arises through the induced
instanton-potential for the originally shift-symmetric field ϕ.

Montero/Uranga/Valenzuela ’15
Heidenreich/Reece/Rudelius ’15



• The instanton action is

S ∼ n/f (with n the instanton or flux number).

• Their maximal curvature scale is
√

f /n, which should not
exceed the UV cutoff:

f /n < Λ2 .

• This fixes the lowest n that we can trust and hence the
minimal size of the instanton correction to the potential V (ϕ):

δV ∼ e−S ∼ e−n/f ∼ e−1/Λ2



• For gravitational instantons not to prevent inflation, the
relative correction must remain small:

δV

V
∼ e−1/Λ2

H2
� 1

• For a Planck-scale cutoff, Λ ∼ 1, this is never possible

• However, the UV cutoff can in principle be as low as H

• Then, if also H � 1, everything might be fine....

δV

V
∼ e−1/H2

H2

AH, Mangat, Rompineve, Witkowski ’15



Results to appear soon:
work with Mangat/Theisen/Witkowski

• Coleman’s calculation of the potential remains valid even
though one always encounters instanton / anti-instanton pairs.

• The size of the effect does not get suppressed by exp(−1/Λ2),
with Λ the moduli scale.
(Light moduli do not disturb the solution significantly.)

• Hence, we expect Λ ∼ mKK .

• Let us see what the strongest, model-independent bound is:
(Take Λ = mKK = 1/Rself −dual ; Now every π-factor matters!)

• Maximal effect: exp(−S) = exp(−3π2) ∼ 10−13.

→ parallel talks by L. Witkowski and P. Mangat



Gravity Waves from Monodromy

(work in progress with Jaeckel/Rompineve/Witkowski)

Φ

V

How does Rehating in this potential work?

for (somewhat) related considerations see papers by
T. Higaki and F. Takahashi (with different collaborators);
Kaloper/Padilla ’16; Jaeckel/Metha/Witkowski ’16



• The field oscillates and eventually
‘gets stuck’ in one of the local minima

• It then continues to oscillate in that minimum
(where it later decays to light particles, i.e. reheats)



• At each ‘turning point’, an uncertainty due to field
fluctuations exists

• Hence, with a certain probability, two different minima
are populated inside one Hubble patch



• Evententually, bubbles of the lowest populated minmum
expand and collide

• Gravity waves are produced in analogy to the case of a
thermal first-order phase transition

→ parallel talk by F. Rompineve



Summary (1)

• Let’s assume that string compactifications with form-fields /
wrapped objects always obey the particle WGC.

• Then a geometric WGC follows.

• From this, one obtains a generalized WGC including axions,
cosmic strings and DWs etc.

• The KK scale is always so low that also the
generalized magnetic WGC is holds.
Let’s accept this latter form also more generally.

• The magnetic WGC for DWs provides for a very direct way of
constraining axion-monodromy-type scalar potentials.



Summary (2)

• Independently of the WGC, Giddings-Strominger wormholes
constrain large-field inflation

• This effect persists above the moduli stabilization scale;
Calculational control is only lost at the KK scale

• However, due to a surprisingly large ‘3π2’ prefactor, bounds
are weak even for the highest possible KK scale

Summary (3)

• Reheating after axion monodromy or ‘winding’ inflation can
lead to a ‘dynamical phase decomposition’

• This can induce a rather significant gravity wave signal


