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The WGC is interesting as ...
Arkani-Hamed/Motl/Nicolis/Vafa '06

1) A possible fundamental feature of quantum gravity

e |t quantifies the non-existence of global symmetries

(If g — 0 is impossible, we need to know gpmip.
The WGC states gpin = m.)

2) Since it may constrain large-field inflation / relaxation...
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The (generalized) weak gravity conjecture

e The basic underlying lagrangian is
(for p-dim. objects in d dims.; with Mp = 1)

1
SNZ/(FP+1)2+T/ dv+/ Ap
g p—dim. p—dim.
with
Fpi1 = dA,.

e To avoid stable extremal black branes, one requires charged
objects with sub-extremal mass (tension):

p(d —p—2)
d—2

1/2
q/T > ’yp7/d . Wwhere v,4 =

e As one clearly sees, this fails for instantons and objects with
codimension 1 & 2 (domain walls and cosmic ‘strings’).

Heidenreich/Reece/Rudelius '15



Note:

e This failure outside the range 0 < p < d-—2
is not unexpected:

e Indeed, the argument that
‘the WGC protects us from too many stable objects’
fails also intuitively outside this range.
(E.g., strings and domain walls induce see e.g. Susskind '95

no long-range gravitational force.)
However:

e The arguments that
‘the WGC protects us from the global-symmetry limit’
and
‘string theory always obeys the WGC’
support the conjecture even outside the above range.



e Arguments supporting/quantifying the WGC
outside the ‘canonical range' of 0 < p < d—2 include

e string dualities
Brown /Cottrell /Shiu/Soler '15

o consistency of generic KK-reductions
o consideration of dilatonic black branes.

Heidenreich /Reece/Rudelius '15
(‘lattice WGC')

e Here, we will try develop the duality argument....



In fact, the key is not in the dualities, but rather in
the same CY can underlie different 4d objects.

Hence, there ought to be a
Geometric WGC

Consider a [1A-CY X with D2-branes wrapped on 2-cycles.
Let w; be a basis of H?(X,7Z).

The metric on X induces a metric for 2-forms,

K,'J'E/ Wi A %W,
X

and on the (dual) space of 2-cycles, K.

We make the standard ansatz

G = Al(x) Aw(y).



e Focus on 4d particles coming from D2s on a particular cycle &
e The relevant 4d action reads (/s = 1)

Sy ~ (vx/gf)/@R + /KUFM*F% +qr / AL
world-line

x>

with the charges ,
qi :/ w'
pX

e Note that only a particular combination of Af's is sourced by
particles ‘from X ':

= A K’qujZ (this defines A;).
e Thus, one arrives at the standard action

1
54372 F2/\*F2+/A1,
2e

world-line

with e? given by.....



e With e? given by

e? =2 |q%|? with %) = K"jq,?:q}:.

Here we reinstanted O(1) factors.

Note: Metric on X — natural norm on p-form space
— natural norm |g*| on p-cycle space.

e Finally, use Wi = Vx/Kk3,82 together with My = (u2/gs) Vi
and impose the WGC:

Vi ¥ \/L/2
eMp > 1 N 9| Vx >
Ms \ﬁ Vs

N =

Thus a particular, purely geometric (rescaling- and
gs-independent) quantity characterizing X is constrained.



Crucially, the same function appears in WGC constraints on
other objects obtained from other branes wrapped on 2-cycles.

For example, D4s give domain walls with

epwMp _ (2 Vx)'/2|q*|
Tow Vs

Thus, using the ‘particle-WGC’, we constrain v)1</2|qu/vz,
obtaining a precise ‘domain-wall-WGC':

epwMp

>
Tpw

N =

This goes through for any dimension of the cycle ¥ and any
dimension of the brane. Hence, any object in 4d is
constrained by the imposition of the WGC for particles.



e Thus, allowing also for multiple gauge fields,

Cheung/Remmen '14; Rudelius '14/'15,
Brown/Cottrell/Shiu/Soler, Bachlechner/Long/McAllister '15

we find in full generality:

Geometric conjecture:

The convex hull spanned by the vectors (V)1</2/Vz) q*
(with X € HP(X,Z)) contains the ball of radius 1/2.

® Note: At the structural level, this can be understood from the calibration
condition on branes. Details remain to be worked out....

Thanks to F. Marchesano for explaining this point.

® Note: We did not use SUSY, the CY-condition, or the existence of a
SUSY-brane on . So this may be much stronger then the ‘not too
surprising’ BPS-like result.

see also work in progress by Heidenreich/Rudelius/Reece



Constraining axion monodromy with the WGC

Disclaimer:

Only brief summary; for deeper analysis and relation to earlier work...
Kaloper/Lawrence/Sorbo '08.."11  (see also Dvali '05)
Brown/Cottrell/Shiu/Soler; lbanez/Montero/Uranga/Valenzuela '15

e Let's assume, based on the above, that
all 4d objects, in particular DWs, are constrained.

e Note: the ‘light’ stringy objects fulfilling the WGC above
are nevertheless always heavier than the KK-scale Mk = A.
e Thus, one might conjecture that the magnetic WGC
/\3 S ezﬂp

always holds.



e Start from the ‘standard’ monodromy potential

(with ‘instantonic wiggles') AH /Rompineve/Westphal 15

1
L= (0¢)* - Engoz —acos(p/f).

\Y

The low-energy effective theory
of this model has no scalar but
just a set of discrete vacua

(as in the

Bousso-Polchinski landscape).

¢

(Effective) domain walls are automatically present, but are too
light to give any useful WGC constraint.

(In fact, one may argue that they make the electric WGC useless.)



Nevertheless, the effective action

1
SN/F2+/ A
20e)2 4 Jow

is there and, using the quantization F4 = n e2,

allows for matching the discrete effective potential
V(Fa)er = =(e2)?n?
to the previous effective potential

1
V(¢)etr = §m2(27rnf)2 .

This implies e = 2rmf and hence

/\3 5 ezﬂp = 27rmfﬂp .



e In the context of inflation, one has

H -~ mM ©max ,S
and hence
N~ mfMp = Emx <
Mp

e There is still lots of parameter room for large-field inflation....

A

(m)” (%f)“
m WP '



Gravitational Instantons and Moduli Stabilization

e In Euclidean Einstein gravity, supplemented with an axionic
scalar ¢ , instantonic solutions exist:

Giddings/Strominger '88

e The ‘throat’ is supported by the gradient energy of ¢ or,
equivalently, by flux of the dual 3-form Hs.

e The relevance for inflation arises through the induced
instanton-potential for the originally shift-symmetric field .

Montero/Uranga/Valenzuela '15
Heidenreich /Reece/Rudelius '15



e The instanton action is

S~n/f (with n the instanton or flux number).

e Their maximal curvature scale is /f/n, which should not
exceed the UV cutoff:

f/n< N>

e This fixes the lowest n that we can trust and hence the
minimal size of the instanton correction to the potential V():

— — _1/A2
5VNeSNen/fNel//\




For gravitational instantons not to prevent inflation, the
relative correction must remain small:

sV e UN 1
v e S

For a Planck-scale cutoff, A ~ 1, this is never possible
However, the UV cutoff can in principle be as low as H

Then, if also H < 1, everything might be fine....

oV e I/H?
v TR

AH, Mangat, Rompineve, Witkowski '15



Results to appear soon:

work with Mangat/Theisen /Witkowski

e Coleman’s calculation of the potential remains valid even
though one always encounters instanton / anti-instanton pairs.

e The size of the effect does not get suppressed by exp(—1/A?),
with A the moduli scale.
(Light moduli do not disturb the solution significantly.)

e Hence, we expect A ~ mkg.

e Let us see what the strongest, model-independent bound is:
(Take A = mk = 1/Rseif —duai; Now every m-factor matters!)

e Maximal effect: exp(—S) = exp(—372) ~ 10713,

— parallel talks by L. Witkowski and P. Mangat



Gravity Waves from Monodromy

(work in progress with Jaeckel/Rompineve/Witkowski)

\%

¢

How does Rehating in this potential work?

for (somewhat) related considerations see papers by
T. Higaki and F. Takahashi (with different collaborators);
Kaloper/Padilla '16; Jaeckel/Metha/Witkowski '16



e The field oscillates and eventually
‘gets stuck’ in one of the local minima

e It then continues to oscillate in that minimum
(where it later decays to light particles, i.e. reheats)

/
\
LA

\Y




e At each ‘turning point’, an uncertainty due to field
fluctuations exists

e Hence, with a certain probability, two different minima
are populated inside one Hubble patch




Log[®h?]

-10

-15

e Evententually, bubbles of the lowest populated minmum

expand and collide

e Gravity waves are produced in analogy to the case of a

thermal first-order phase transition

ET
aLIGO

eLISA

/
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5
Loglw[Hz]] — parallel talk by F. Rompineve



Summary (1)

Let's assume that string compactifications with form-fields /
wrapped objects always obey the particle WGC.

Then a geometric WGC follows.

From this, one obtains a generalized WGC including axions,
cosmic strings and DWs etc.

The KK scale is always so low that also the
generalized magnetic WGC is holds.
Let's accept this latter form also more generally.

The magnetic WGC for DWs provides for a very direct way of
constraining axion-monodromy-type scalar potentials.



Summary (2)

Independently of the WGC, Giddings-Strominger wormholes
constrain large-field inflation

This effect persists above the moduli stabilization scale;
Calculational control is only lost at the KK scale

However, due to a surprisingly large ‘372’ prefactor, bounds
are weak even for the highest possible KK scale

Summary (3)

Reheating after axion monodromy or ‘winding’ inflation can
lead to a ‘dynamical phase decomposition’

This can induce a rather significant gravity wave signal



